Google’s New Deep Learning MOOC Using TensorFlow

Deep learning became a hot topic in machine learning in the last 3-4 years (see inset below) and recently, Google released TensorFlow (a Python based deep learning toolkit) as an open source project to bring deep learning to everyone.

deep_learning_google_trends
Interest in the Google search term Deep Learning over time

If you have wanted to get your hands dirty with TensorFlow or needed more direction with that, here’s some good news – Google is offering an open MOOC on deep learning methods using TensorFlow here. This course has been developed with Vincent Vanhoucke, Principal Scientist at Google, and technical lead in the Google Brain team. However, this is an intermediate to advanced level course and assumes you have taken a first course in machine learning, or that you are at least familiar with supervised learning methods.

Google’s overall goal in designing this course is to provide the machine learning enthusiast a rapid and direct path to solving real and interesting problems with deep learning techniques.

What is Deep Learning?

Course Overview

Advertisement

Machine Learning — New Coursera Specialization from the University of Washington

I have finally embarked on my first machine learning MOOC / Specialization. I love Python, and this course uses Python as the language of choice. Also, the instructors assert that Python is widely used in industry, and is becoming the de facto language for data science in industry. They use IPython Notebook in their assignments and videos.

The specialization offered by the University of Washington consists of 5 courses and a capstone project spread across about 8 months (September through April). The specialization’s first iteration kicked off yesterday.

washingtonMachineLearningThe first course, Machine Learning Foundations: A Case Study Approach is 6 weeks long, running from September 22 through November 9.

The Instructors:

Emily Fox and Carlos Guestrin
EmilyFoxguestrin-dato

Key Learning Outcomes
– Identify potential applications of machine learning in practice.
– Describe the core differences in analyses enabled by regression, classification, and clustering.
– Select the appropriate machine learning task for a potential application.
– Apply regression, classification, clustering, retrieval, recommender systems, and deep learning.
– Represent your data as features to serve as input to machine learning models.
– Assess the model quality in terms of relevant error metrics for each task.
– Utilize a dataset to fit a model to analyze new data.
– Build an end-to-end application that uses machine learning at its core.
– Implement these techniques in Python.

Week-by-Week
Week 1: Introductory welcome videos and the instructors’ views on the future of intelligent applications
Week 2: Predicting House Prices (Regression)
Week 3: Classification (Sentiment Analysis)
Week 4: Clustering and Similarity: Retrieving Documents
Week 5: Recommending Products
Week 6: Deep Learning: Searching for Images

EDIT

It’s been 3 days since the course began, and here’s how the classmate demographic looks like:

Classmates09252015