MITx 15.071x (Analytics Edge) – 2016

I am auditing this course currently and just completed its 2nd assignment. It’s probably one of the best courses out there to learn R in a way that you go beyond the syntax with an objective in mind – to do analytics and run machine learning algorithms to derive insight from data. This course is different from machine learning courses by say, Andrew Ng in that this course won’t focus on coding the algorithm and rather would emphasize on diving right into the implementation of those algorithms using libraries that the R programming language already equips us with.

Take a look at the course logistics. And hey, they’ve got a Kaggle competition!

AnalyticsEdgeLogistics

There’s still time to enroll and grab a certificate (or simply audit). The course is offered once a year. I met a bunch of people who did well at a data hackathon I had gone to recently, who had learned the ropes in data science thanks to Analytics Edge.

Advertisements

Introducing cricketr! : An R package to analyze performances of cricketers

Wicked! Or must I say ‘howzzat!?’

Giga thoughts ...

Yet all experience is an arch wherethro’
Gleams that untravell’d world whose margin fades
For ever and forever when I move.
How dull it is to pause, to make an end,
To rust unburnish’d, not to shine in use!

Ulysses by Alfred Tennyson

Introduction

This is an initial post in which I introduce a cricketing package ‘cricketr’ which I have created. This package was a natural culmination to my earlier posts on cricket and my completing 9 modules of Data Science Specialization, from John Hopkins University at Coursera. The thought of creating this package struck me some time back, and I have finally been able to bring this to fruition.

So here it is. My R package ‘cricketr!!!’

This package uses the statistics info available in ESPN Cricinfo Statsguru. The current version of this package only uses data from test cricket. I plan to develop functionality for One-day and…

View original post 4,951 more words